- #1
SithsNGiggles
- 186
- 0
Homework Statement
Let F be a relation from X to Y and let A and B be subsets of X. Then,
[itex]F(A \cap B) \subseteq F(A) \cap F(B)[/itex]
The Attempt at a Solution
Let [itex]y \in F(A \cap B)[/itex]. Then, [itex]\exists x \in A \cap B[/itex], so [itex]\exists x \in A[/itex] and [itex]x \in B[/itex].
Then, [itex]y \in F(A)[/itex] and [itex]y \in F(B)[/itex], so [itex]y \in F(A) \cap F(B)[/itex].
Therefore, [itex]y \in F(A \cap B) \Rightarrow y \in F(A) \cap F(B)[/itex], and hence, [itex]F(A \cap B) \subseteq F(A) \cap F(B)[/itex].
I'm having trouble showing that the right side is not a subset of the left. Thanks for any help.