- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Let $a,\,b,\,c$ be real numbers such that $a\ge b\ge c>0$.
Prove that \(\displaystyle \frac{a^2-b^2}{c}+\frac{c^2-b^2}{a}+\frac{a^2-c^2}{b}\ge 3a-4b+c\).
Prove that \(\displaystyle \frac{a^2-b^2}{c}+\frac{c^2-b^2}{a}+\frac{a^2-c^2}{b}\ge 3a-4b+c\).