- #1
Brunno
- 80
- 0
Hi fellows,
Prove that:
[tex]\sqrt{\frac{7}{2}}[/tex][tex]\leq[/tex]|z+1|+|1-z+z²|[tex]\leq[/tex][tex]\sqrt{\frac{7}{6}}[/tex]
for all complex numbers with |z|=1.
I've tried something like this:
Starting by the following property:
-|z|[tex]\leq[/tex]Re(z)[tex]\leq[/tex]|z|
but i could'nt get anywhere.
Thanks in advance.
Homework Statement
Prove that:
[tex]\sqrt{\frac{7}{2}}[/tex][tex]\leq[/tex]|z+1|+|1-z+z²|[tex]\leq[/tex][tex]\sqrt{\frac{7}{6}}[/tex]
for all complex numbers with |z|=1.
Homework Equations
The Attempt at a Solution
I've tried something like this:
Starting by the following property:
-|z|[tex]\leq[/tex]Re(z)[tex]\leq[/tex]|z|
but i could'nt get anywhere.
Thanks in advance.