- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
For positive real numbers $a,\,b,\,c$, prove the inequality:
\(\displaystyle a + b + c ≥ \frac{a(b + 1)}{a + 1} + \frac{b(c + 1)}{b + 1}+ \frac{c(a + 1)}{c + 1}\)
\(\displaystyle a + b + c ≥ \frac{a(b + 1)}{a + 1} + \frac{b(c + 1)}{b + 1}+ \frac{c(a + 1)}{c + 1}\)