Proving Inequality: $\frac{1}{ab+bc+ca}\geq\frac{27}{2(a+b+c)^2}$

  • MHB
  • Thread starter solakis1
  • Start date
  • Tags
    Inequality
In summary: And thus we have:$(x_1^2+x_2^2)(y_1^2+y_2^2)(z_1^2+z_2^2)\geq (x_1y_1z_1+x_2y_2z_2)^2$or$(a+b+c)(\frac{1}{b}+\frac{1}{c}+\frac{1}{a})\geq (1+1+1)^2$And thus we have shown that:$\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)}\geq\frac{27}{2(a+b
  • #1
solakis1
422
0
Prove:

$\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)}\geq\frac{27}{2(a+b+c)^2}$

where a,b,c are positives
 
Mathematics news on Phys.org
  • #2
solakis said:
Prove:

$\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)}\geq\frac{27}{2(a+b+c)^2}$

where a,b,c are positives
[sp] you may use the CAUCHY- SCHWARZ inequality[/sp]
 
  • #3
My attempt:

Applying the Cauchy-Schwarz inequality yields:

\[A^2 = \left ( \frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)} \right )^2 \geq \left ( \frac{1}{a^2}+\frac{1}{b^2} +\frac{1}{c^2}\right )\left ( \frac{1}{(a+b)^2}+\frac{1}{(b+c)^2}+\frac{1}{(c+a)^2} \right )\]

From the fact, that the root-mean-square is always greater than or equal to the harmonic mean, I get:
\[\frac{1}{a^2}+\frac{1}{b^2} +\frac{1}{c^2} \geq \frac{3^3}{(a+b+c)^2}\]
- and
\[\frac{1}{(a+b)^2}+\frac{1}{(b+c)^2} +\frac{1}{(a+c)^2} \geq \frac{3^3}{2^2(a+b+c)^2}\]

Thus,

\[A^2 \geq \frac{3^6}{2^2(a+b+c)^4}\]

- or

\[A = \frac{1}{b(a+b)} +\frac{1}{c(b+c)}+\frac{1}{a(c+a)} \geq \frac{27}{2(a+b+c)^2}\]
 
  • #4
lfdahl said:
My attempt:

Applying the Cauchy-Schwarz inequality yields:

\[A^2 = \left ( \frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)} \right )^2 \geq \left ( \frac{1}{a^2}+\frac{1}{b^2} +\frac{1}{c^2}\right )\left ( \frac{1}{(a+b)^2}+\frac{1}{(b+c)^2}+\frac{1}{(c+a)^2} \right )\]

From the fact, that the root-mean-square is always greater than or equal to the harmonic mean, I get:
\[\frac{1}{a^2}+\frac{1}{b^2} +\frac{1}{c^2} \geq \frac{3^3}{(a+b+c)^2}\]
- and
\[\frac{1}{(a+b)^2}+\frac{1}{(b+c)^2} +\frac{1}{(a+c)^2} \geq \frac{3^3}{2^2(a+b+c)^2}\]
Thus,

\[A^2 \geq \frac{3^6}{2^2(a+b+c)^4}\]

- or

\[A = \frac{1}{b(a+b)} +\frac{1}{c(b+c)}+\frac{1}{a(c+a)} \geq \frac{27}{2(a+b+c)^2}\]

[sp]Should not the inequality be the other way round,i.e\[A^2 = \left ( \frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)} \right )^2 \leq \left ( \frac{1}{a^2}+\frac{1}{b^2} +\frac{1}{c^2}\right )\left ( \frac{1}{(a+b)^2}+\frac{1}{(b+c)^2}+\frac{1}{(c+a)^2} \right )\][/sp]
 
  • #5
solakis said:
[sp]Should not the inequality be the other way round,i.e\[A^2 = \left ( \frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)} \right )^2 \leq \left ( \frac{1}{a^2}+\frac{1}{b^2} +\frac{1}{c^2}\right )\left ( \frac{1}{(a+b)^2}+\frac{1}{(b+c)^2}+\frac{1}{(c+a)^2} \right )\][/sp]

You´re absolutely right! It´s my mistake. Thankyou for pointing out the error.
 
  • #6
solakis said:
Prove:

$\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)}\geq\frac{27}{2(a+b+c)^2}$

where a,b,c are positives
[sp]Following the hint, apply the Cauchy-Schwarz inequality to the vectors $\bigl(\sqrt{a+b},\sqrt{b+c},\sqrt{c+a}\bigr)$ and $\bigl(\frac1{\sqrt{b(a+b)}},\frac1{\sqrt{c(b+c)}},\frac1{\sqrt{a(c+a)}}\bigr)$. That gives $$\left(\frac1{\sqrt b} + \dfrac1{\sqrt c} + \dfrac1{\sqrt a}\right)^2 \leqslant 2(a+b+c)\left(\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)}\right).$$ The required result will follow if we can show that $$27 \leqslant (a+b+c)\left(\frac1{\sqrt a} + \dfrac1{\sqrt b} + \dfrac1{\sqrt c}\right)^2.$$ To do that, I need to use Hölder's inequality, which (applied to vectors in 3-dimensional space, with all coordinates positive) says that if $\mathbf{x} = (x_1,x_2,x_3)$, $\mathbf{y} = (y_1,y_2,y_3)$ and $\frac1p + \frac1q = 1$, then $$x_1y_1 + x_2y_2 + x_3y_3 \leqslant (x_1^p+x_2^p+x_3^p)^{1/p} (y_1^q+y_2^q+y_3^q)^{1/q}.$$ With $p=3$, $q=3/2$, $\mathbf{x} = (a^{1/3},b^{1/3},c^{1/3})$ and $\mathbf{y} = (a^{-1/3},b^{-1/3},c^{-1/3})$, that becomes $$3 \leqslant (a+b+c)^{1/3}\left(\frac1{\sqrt a} + \dfrac1{\sqrt b} + \dfrac1{\sqrt c}\right)^{2/3}.$$ After cubing both sides, that gives the result.[/sp]
 
  • #7
a different take would be to look at this in terms of convexity.
$\mu :=\frac{a+b+c}{3}$
the inequality is equivalent to proving
$\frac{1}{2\mu^2} = \frac{1}{\mu(\mu + \mu)} \leq \frac{1}{3}\Big(\frac{1}{b(a+b)} + \frac{1}{c(b+c)} + \frac{1}{a(c+a)}\Big)$ if we consider the function $f: \mathbb R^3 \mapsto \mathbb R$ given by
$f\big(\mathbf x\big) = \frac{1}{x_2(x_1 + x_2)}$

we can examine its Hessian
$\mathbf H =\left[\begin{matrix}\frac{2}{x_{2} \left(x_{1} + x_{2}\right)^{3}} & \frac{2}{x_{2} \left(x_{1} + x_{2}\right)^{3}} + \frac{1}{x_{2}^{2} \left(x_{1} + x_{2}\right)^{2}} & 0\\\frac{2}{x_{2} \left(x_{1} + x_{2}\right)^{3}} + \frac{1}{x_{2}^{2} \left(x_{1} + x_{2}\right)^{2}} & \frac{2}{x_{2} \left(x_{1} + x_{2}\right)^{3}} + \frac{2}{x_{2}^{2} \left(x_{1} + x_{2}\right)^{2}} + \frac{2}{x_{2}^{3} \left(x_{1} + x_{2}\right)} & 0\\0 & 0 & 0\end{matrix}\right]$

and e.g. apply Sylvester's Determinant Criterion to confirm that $f$ is convex so long as each $x_i \gt 0$, i.e.

$\det\big(\mathbf H_{1:1}\big) = \frac{2}{x_{2} (x_{1} + x_{2})^{3}} \gt 0$ since each component is positive

$\det\big(\mathbf H_{2:2}\big) = \frac{3}{x_2^4(x_1 + x_2)^4}$
https://www.wolframalpha.com/input/?i=hessian+of+1/(x_2*(x_1+x_2))+

$\det\big(\mathbf H_{3:3}\big) = \det\big(\mathbf H\big) = 0$
because there is a column of all zeros

now, selecting:
$\mathbf x := \left[\begin{matrix} a \\ b \\ c\end{matrix}\right] $
and using cyclic permutation matrix

$\mathbf P = \left[\begin{matrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{matrix}\right] $

noting that
$\mathbf P^0 + \mathbf P^1 + \mathbf P^2 = \left[\begin{matrix}1 & 1 & 1\\1 & 1 & 1\\1 & 1 & 1\end{matrix}\right]$

we get
$\frac{1}{\mu(\mu + \mu)}= f\Big(\frac{1}{3}\big(\mathbf P^0 + \mathbf P^1+\mathbf P^2\big)\mathbf x\Big) = f\Big(\frac{1}{3}\big(\mathbf P^0\mathbf x + \mathbf P^1\mathbf x +\mathbf P^2\mathbf x\big)\Big)$
$ \leq \frac{1}{3}\Big(f\big(\mathbf P^0\mathbf x\big) + f\big(\mathbf P^1\mathbf x\big)+ f\big(\mathbf P^2\mathbf x\big) \Big) = \frac{1}{3}\Big(\frac{1}{b(a+b)}+ \frac{1}{a(c+a)} + \frac{1}{c(b+c)}\Big) = \frac{1}{3}\Big(\frac{1}{b(a+b)} + \frac{1}{c(b+c)} + \frac{1}{a(c+a)}\Big)$

by Jensen's Inequality technical items:
i.) the components of $\mathbf H$ are rational functions so I take for granted that they vary continuously with $\mathbf x$
ii.) Sylvester's Determinant criterion might seem 'wrong' here since it technically applies when all determinants are positive and our final one is zero-- but since the first 2 leading minors are positive, it applies to that 2x2 principal submatrix and implies that is positive definite e.g. it implies the following Cholesky factorization with blocked structure showing positive semi-definiteness for $\mathbf H$

$\mathbf H =\left[\begin{matrix}\frac{2}{x_{2} \left(x_{1} + x_{2}\right)^{3}} & \frac{2}{x_{2} \left(x_{1} + x_{2}\right)^{3}} + \frac{1}{x_{2}^{2} \left(x_{1} + x_{2}\right)^{2}} & 0\\\frac{2}{x_{2} \left(x_{1} + x_{2}\right)^{3}} + \frac{1}{x_{2}^{2} \left(x_{1} + x_{2}\right)^{2}} & \frac{2}{x_{2} \left(x_{1} + x_{2}\right)^{3}} + \frac{2}{x_{2}^{2} \left(x_{1} + x_{2}\right)^{2}} + \frac{2}{x_{2}^{3} \left(x_{1} + x_{2}\right)} & 0\\0 & 0 & 0\end{matrix}\right]= \left[\begin{matrix} \mathbf {LL}^T & 0 \\ 0 & 0 \end{matrix}\right] = \left[\begin{matrix} \mathbf {L} & 0 \\ 0 & 0 \end{matrix}\right]\left[\begin{matrix} \mathbf {L} & 0 \\ 0 & 0 \end{matrix}\right]^T \succeq 0$
 
  • #8
[sp]$\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)}\geq\frac{27}{2(a+b+c)^2}$.................(1)

or
$2(a+b+c)(\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)})\geq\frac{27}{(a+b+c)}$

But :

$2(a+b+c)(\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)})$ =

=$[(\sqrt(a+b))^2+(\sqrt (b+c))^2+(\sqrt (c+a))^2][(\frac{1}{\sqrt b(a+b)})^2+(\frac{1}{\sqrt c(b+c)})^2+(\frac{1}{\sqrt a(c+a)})^2]$

Which according to the B-C-S inequality is greater or equal to:

$(\frac{1}{\sqrt b} +\frac{1}{\sqrt c}+\frac{1}{\sqrt a})^2$Hence we have to prove:

$(\frac{1}{\sqrt b} +(\frac{1}{\sqrt c}+\frac{1}{\sqrt a})^2\geq \frac{27}{a+b+c)}$ to satisfy (1)

or:

$(a+b+c)(\frac{1}{\sqrt b} +\frac{1}{\sqrt c}+\frac{1}{\sqrt a})^2\geq 27$..............(2)But from the inequalities:

$(\sqrt a-\sqrt b)^2\geq 0$, $(\sqrt b-\sqrt c)^2\geq 0$, $\sqrt c-\sqrt a)^2)\geq 0$

we can get the inequality:

$(a+b+c)\geq\frac{(\sqrt a+\sqrt b+\sqrt c)^2}{3}$
and multiplying both sides of the above inequality by$ (\frac{1}{\sqrt b} +\frac{1}{\sqrt c}+\frac{1}{\sqrt a})^2$ we have:$(a+b+c)(\frac{1}{\sqrt b} +\frac{1}{\sqrt c}+\frac{1}{\sqrt a})^2\geq\frac{(\sqrt a+\sqrt b+\sqrt c)^2}{3}(\frac{1}{\sqrt b} +\frac{1}{\sqrt c}+\frac{1}{\sqrt a})^2$
Hence to satisfy (2) and thus (1) we have to prove that:$\frac{(\sqrt a+\sqrt b+\sqrt c)^2}{3}(\frac{1}{\sqrt b} +\frac{1}{\sqrt c}+\frac{1}{\sqrt a})^2\geq 27$

or$(\sqrt a+\sqrt b+\sqrt c)(\frac{1}{\sqrt b} +\frac{1}{\sqrt c}+\frac{1}{\sqrt a})\geq 9$

Which is true by using again the B-C-S inequality where we put:

$x_1$=$a^\frac{1}{4}$ $x_2=\frac{1}{a^\frac{1}{4}}$

$y_1=b^\frac{1}{4}$ $y_2= \frac{1}{b^\frac{1}{4}}$

$z_1=c^\frac{1}{4}$ $z_2= \frac{1}{b^\frac{1}{4}}$[/sp]
 

FAQ: Proving Inequality: $\frac{1}{ab+bc+ca}\geq\frac{27}{2(a+b+c)^2}$

What does the inequality $\frac{1}{ab+bc+ca}\geq\frac{27}{2(a+b+c)^2}$ mean?

The inequality means that the expression on the left side, which is the reciprocal of the sum of three products, is greater than or equal to the expression on the right side, which is the reciprocal of two times the square of the sum of three variables.

Why is this inequality important?

This inequality is important because it provides a way to compare the sum of three products to the square of the sum of three variables. It can also be used in various mathematical proofs and applications.

How can this inequality be proven?

This inequality can be proven using various methods, such as algebraic manipulation, substitution, or induction. It can also be proven using geometric interpretations or calculus techniques.

What are the applications of this inequality?

This inequality has various applications in mathematics, including in number theory, algebra, and geometry. It can also be used in physics and engineering to solve problems involving sums of products.

Are there any exceptions to this inequality?

Yes, there are exceptions to this inequality. For example, if any of the variables a, b, or c is equal to 0, then the inequality becomes undefined. Also, if the variables are negative, the inequality may not hold. Therefore, it is important to consider the domain of the variables when using this inequality.

Back
Top