- #1
mathworker
- 111
- 0
i found this problem interesting in stack exchange unfortunately i will participate in discussion for 4 days(vacation)
inequality - Prove $\sum_{i=1}^{n}\frac{a_{i}}{a_{i+1}}\ge\sum_{i=1}^{n}\frac{1-a_{i+1}}{1-a_{i}}$ if $a_{i}>0$ and $a_{1}+a_{2}+\cdots+a_{n}=1$ - Mathematics Stack Exchange
edit:hoping this to be an educational thread
inequality - Prove $\sum_{i=1}^{n}\frac{a_{i}}{a_{i+1}}\ge\sum_{i=1}^{n}\frac{1-a_{i+1}}{1-a_{i}}$ if $a_{i}>0$ and $a_{1}+a_{2}+\cdots+a_{n}=1$ - Mathematics Stack Exchange
edit:hoping this to be an educational thread