- #1
ReyChiquito
- 120
- 1
Let [itex]x \in \mathbb{R}^n[/itex] and
[tex]u_0>0, \qquad \int\limits_\Omega u_0(x) dx =1, \qquad E(t)=\int\limits_\Omega u(x,t)u_0(x)dx[/tex]
Im having trouble proving the following inequality
[tex]\int\limits_\Omega \frac{u_0(x)}{(1+u(x,t))^2}dx \ge \dfrac{1}{(1+E)^2}. \qquad \hbox{(1)}[/tex]
I know i have to use Jensen's inequality
[tex] f\left(\frac{1}{|\Omega|}\int\limits_\Omega u dx \right) \le \frac{1}{|\Omega|}\int\limits_\Omega f(u) dx [/tex],
where [itex]f(u)[/itex] is convex.
But in order to use it to prove (1), I need to rewrite the left hand side of the equation or use a previous inequality right?
There is where I am stuck. Can anybody give me a sugestion pls?
[tex]u_0>0, \qquad \int\limits_\Omega u_0(x) dx =1, \qquad E(t)=\int\limits_\Omega u(x,t)u_0(x)dx[/tex]
Im having trouble proving the following inequality
[tex]\int\limits_\Omega \frac{u_0(x)}{(1+u(x,t))^2}dx \ge \dfrac{1}{(1+E)^2}. \qquad \hbox{(1)}[/tex]
I know i have to use Jensen's inequality
[tex] f\left(\frac{1}{|\Omega|}\int\limits_\Omega u dx \right) \le \frac{1}{|\Omega|}\int\limits_\Omega f(u) dx [/tex],
where [itex]f(u)[/itex] is convex.
But in order to use it to prove (1), I need to rewrite the left hand side of the equation or use a previous inequality right?
There is where I am stuck. Can anybody give me a sugestion pls?
Last edited: