- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)We have $G(x,y)=-\frac{1}{4 \pi} \frac{1}{||\overline{x}-\overline{y}||}$ for $x, y \in \mathbb{R}^3$.I want to show that $\int_{\mathbb{R}^3} \Delta{G(x,y)} dx= 1$.
It suffices to show that $\int_{\mathbb{R}^3} \Delta{G(x,0)} dx= 1$, since setting $\overline{x}=x-y$ we have $G(\overline{x},0)=G(x,y)$, right?
It holds that $\Delta G(x,y)=0$ for $x \neq y$, so $\int_{\mathbb{R}^3} \Delta{G(x,0)} dx= \int_{B(0,r)} \Delta{G(x,0)}$.
How can we apply Gauss's theorem in order to compute the above integral?
It suffices to show that $\int_{\mathbb{R}^3} \Delta{G(x,0)} dx= 1$, since setting $\overline{x}=x-y$ we have $G(\overline{x},0)=G(x,y)$, right?
It holds that $\Delta G(x,y)=0$ for $x \neq y$, so $\int_{\mathbb{R}^3} \Delta{G(x,0)} dx= \int_{B(0,r)} \Delta{G(x,0)}$.
How can we apply Gauss's theorem in order to compute the above integral?