- #1
zetafunction
- 391
- 0
let be the functions f(x) and g(x) defined by an integral equation
[tex] g(x)= \int_{0}^{\infty}dy K(yx)f(y)dy [/tex]
then i want to prove that for example [tex] f(x)= O(x) [/tex]
then using a change of varialbe yx=t i manage to put
[tex] g(x) \le \frac{C}{x^{2}} \int_{0}^{\infty}dtK(t)t [/tex]
if the last integral exists , then a simple condition is that there will be a constant so [tex]x^{2} g(x) \le A [/tex] i assume K(t) is ALWAYS positive on the interval [0,oo)
[tex] g(x)= \int_{0}^{\infty}dy K(yx)f(y)dy [/tex]
then i want to prove that for example [tex] f(x)= O(x) [/tex]
then using a change of varialbe yx=t i manage to put
[tex] g(x) \le \frac{C}{x^{2}} \int_{0}^{\infty}dtK(t)t [/tex]
if the last integral exists , then a simple condition is that there will be a constant so [tex]x^{2} g(x) \le A [/tex] i assume K(t) is ALWAYS positive on the interval [0,oo)