- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hi! (Smile)
Let $(I_a)_{a \in A}$ be a family of ideals of $K[x_1,x_2, \dots, x_n]$.
I want to prove that:
$$V \left ( \sum_{a \in A} I_a\right )=\bigcap_{a \in A} V(I_a)$$
Do we have to use the definition:
$$V(S)=\{ (a_1,a_2, \dots, a_n) \in K^n| f_a(a_1,a_2, \dots, a_n)=0 \forall a \in A\}$$
If so, how could use it? (Thinking)
Let $(I_a)_{a \in A}$ be a family of ideals of $K[x_1,x_2, \dots, x_n]$.
I want to prove that:
$$V \left ( \sum_{a \in A} I_a\right )=\bigcap_{a \in A} V(I_a)$$
Do we have to use the definition:
$$V(S)=\{ (a_1,a_2, \dots, a_n) \in K^n| f_a(a_1,a_2, \dots, a_n)=0 \forall a \in A\}$$
If so, how could use it? (Thinking)