- #1
bernoli123
- 11
- 0
two linear spaces S and S1 over F are isomorphic if and only if there is a one-to-one
correspondence x↔ x1 between the elements x [tex]\in[/tex] S and x1 [tex]\in[/tex] S1
such that if x ↔ x1 and y ↔ y1 then x+y ↔ x1+y1 and ax ↔ ax1
(y [tex]\in[/tex] S , y1 [tex]\in[/tex] S1, a [tex]\in[/tex] F).
prove that two finite -dimensional spaces are isomorphic if and only if they are of the same dimension.
(The correspondence or mapping defining isomorphic linear spaces is called an
isomorphism).
correspondence x↔ x1 between the elements x [tex]\in[/tex] S and x1 [tex]\in[/tex] S1
such that if x ↔ x1 and y ↔ y1 then x+y ↔ x1+y1 and ax ↔ ax1
(y [tex]\in[/tex] S , y1 [tex]\in[/tex] S1, a [tex]\in[/tex] F).
prove that two finite -dimensional spaces are isomorphic if and only if they are of the same dimension.
(The correspondence or mapping defining isomorphic linear spaces is called an
isomorphism).