- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I want to prove that the language $$L=\{ww^R \mid w \in \{0, 1\}^{\star} \}$$ is not regular using the pumping lemma. I have done the following:
We suppose that $L$ is regular and is recognized by a DFA $M$ with $k$ states.
So, $M$ accepts the string $0^k110^k$.
Since $|0^k110^k|=2k+2>k$, there is a state $q$ through which $0^k110^k$ passes at least twice.
So, $0^k110^k$ is of the form $0^k110^k=xyz$, where $x$ leads $M$ from $q_0$ to $q$, $y$ leads $M$ from $q$ to $q$ (and $y \neq \varepsilon$) and $z$ leads $M$ from $q$ to an accepting state.
We suppose that $M$ accepts every string of the form $xy^iz, i \geq 1$.
Is the formulation until this point correct? Could I improve something? (Wondering)
To get a contradiction do we have to take cases for what $y$ contains? (Wondering)
I want to prove that the language $$L=\{ww^R \mid w \in \{0, 1\}^{\star} \}$$ is not regular using the pumping lemma. I have done the following:
We suppose that $L$ is regular and is recognized by a DFA $M$ with $k$ states.
So, $M$ accepts the string $0^k110^k$.
Since $|0^k110^k|=2k+2>k$, there is a state $q$ through which $0^k110^k$ passes at least twice.
So, $0^k110^k$ is of the form $0^k110^k=xyz$, where $x$ leads $M$ from $q_0$ to $q$, $y$ leads $M$ from $q$ to $q$ (and $y \neq \varepsilon$) and $z$ leads $M$ from $q$ to an accepting state.
We suppose that $M$ accepts every string of the form $xy^iz, i \geq 1$.
Is the formulation until this point correct? Could I improve something? (Wondering)
To get a contradiction do we have to take cases for what $y$ contains? (Wondering)
Last edited by a moderator: