- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I want to show that $\displaystyle{\lim_{x\rightarrow \infty}\frac{e^x}{x^{\alpha}}=\infty}$ and $\displaystyle{\lim_{x\rightarrow \infty}x^{\alpha}e^{-x}=0}$ using the exponential series (for a fixed $\alpha\in \mathbb{R}$).
I have done the following:
I want to show that $\displaystyle{\lim_{x\rightarrow \infty}\frac{e^x}{x^{\alpha}}=\infty}$ and $\displaystyle{\lim_{x\rightarrow \infty}x^{\alpha}e^{-x}=0}$ using the exponential series (for a fixed $\alpha\in \mathbb{R}$).
I have done the following:
- $$\lim_{x\rightarrow \infty}\frac{e^x}{x^{\alpha}}=\lim_{x\rightarrow \infty}\frac{1}{x^{\alpha}}\cdot e^x = \lim_{x\rightarrow \infty}\frac{1}{x^{\alpha}}\cdot \sum_{n=0}^{\infty}\frac{x^n}{n!} = \lim_{x\rightarrow \infty} \sum_{n=0}^{\infty}\frac{x^n}{x^{\alpha}\cdot n!}= \lim_{x\rightarrow \infty} \sum_{n=0}^{\infty}\frac{x^{n-\alpha}}{ n!}$$
If there are some $n$'s such that $n < \alpha$ then we separate out the finite part of the sum:
$$\lim_{x\rightarrow \infty} \sum_{n=0}^{\infty}\frac{x^{n-\alpha}}{ n!}=\lim_{x\rightarrow \infty} \left (\sum_{n=0}^{\alpha-1}\frac{x^{n-\alpha}}{ n!}+\frac{x^{\alpha-\alpha}}{ \alpha!}+\sum_{n=\alpha}^{\infty}\frac{x^{n-\alpha}}{ n!}\right )=\lim_{x\rightarrow \infty} \left (\sum_{n=0}^{\alpha-1}\frac{x^{n-\alpha}}{ n!}+\frac{1}{ \alpha!}+\sum_{n=\alpha}^{\infty}\frac{x^{n-\alpha}}{ n!}\right )$$
At the first sum the exponent is negative, and so if $x\rightarrow \infty$ then $x^{n-\alpha}\rightarrow 0$.
At the second sum the exponent is positive, and so if $x\rightarrow \infty$ then $x^{n-\alpha}\rightarrow \infty$.
Therefore the whole limit goes to $\infty$.
Is everything correct? Could we improve something or make it more formally? (Wondering) - $$\lim_{x\rightarrow \infty}x^{\alpha}e^{-x}= \lim_{x\rightarrow \infty}x^{\alpha}\cdot \sum_{n=0}^{\infty}\frac{(-x)^n}{n!} = \lim_{x\rightarrow \infty} \sum_{n=0}^{\infty}\frac{x^{\alpha}\cdot (-1)^n\cdot x^n}{ n!}= \lim_{x\rightarrow \infty} \sum_{n=0}^{\infty}\frac{(-1)^nx^{n+\alpha}}{ n!}$$
Is everything correct so far? How could we continue? (Wondering)
Last edited by a moderator: