MHB Proving matrix group under addition for associative axiom

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

I have some feeling some uncertainty proving one of the axioms for a group. Here is the proof to show this is a group:
Let the set T be defined as a set of 2x2 square matrices with coefficients of integral values and all the entries are the same.
We want to show that T is an abelian group under addition. Let's denote that $(x)=\left[\begin{array}{cc}x&x\\x&x\end{array}\right]$.
Let $(a)$ and $(b)$ $\in T$ where (a),(b) are a arbitrary elements in the set T. Then by the definition of (a) and (b) as well the definition of matrix addition, So, \begin{equation}
(a)+(b)=\left[\begin{array}{cc}
a & a \\
a & a
\end{array}\right]+\left[\begin{array}{cc}
b & b \\
b & b
\end{array}\right]=\left[\begin{array}{cc}
a+b & a+b \\
a+b & a+b
\end{array}\right]= (a+b)\in T. \end{equation}
Let $(a)$ be an arbitrary element in the set $T$. Let $(e)=(0)$. Then, by the definition of the binary operation,
\begin{equation}
(a)+(0)=\left[\begin{array}{cc}
a & a \\
a & a
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
a+0 & a+0 \\
a+0 & a+0\end{array}\right]=\left[\begin{array}{cc}
a & a \\
a & a
\end{array}\right]=(a).\end{equation} And \begin{equation}
(0)+(a)=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
a & a \\
a & a
\end{array}\right]=\left[\begin{array}{cc}
0+a & 0+a \\
0+a & 0+a\end{array}\right]=\left[\begin{array}{cc}
a & a \\
a & a
\end{array}\right]=(a)
\end{equation}
Let $(a)$ be an arbitrary element in the set $T$. Let $(a')=(-a)$. Since the coefficients of the matrix is the set of integers, so the additive inverse for the integers is the negative element of the set of integers. Then, by the definition of the binary operation, \begin{equation}
(a)+(-a)=\left[\begin{array}{cc}
a & a \\
a & a
\end{array}\right]+\left[\begin{array}{cc}
-a & -a \\
-a & -a
\end{array}\right]=\left[\begin{array}{cc}
a-a & a-a \\
a-a & a-a\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]=(0).
\end{equation}
And \begin{equation}
(-a)+(a)=\left[\begin{array}{cc}
-a & -a \\
-a & -a
\end{array}\right]+\left[\begin{array}{cc}
a & a \\
a & a
\end{array}\right]=\left[\begin{array}{cc}
-a+a & -a+a \\
-a+a & -a+a\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]=(0).
\end{equation}
Let $(a)$,$(b)$,$(c)$ $\in T$ where $(a),(b),(c)$ are a arbitrary elements in the set T. Then by the definition of (a),(b),(b) as well the definition of matrix addition, So, \begin{equation}
((a)+(b))+(c)=(\left[\begin{array}{cc}
a & a \\
a & a
\end{array}\right]+\left[\begin{array}{cc}
b & b \\
b & b
\end{array}\right])+\left[\begin{array}{cc}
c & c \\
c & c
\end{array}\right]=\left[\begin{array}{cc}
a+b & a+b \\
a+b & a+b
\end{array}\right]+\left[\begin{array}{cc}
c & c \\
c & c
\end{array}\right]=\left[\begin{array}{cc}
(a+b)+c & (a+b)+c \\
(a+b)+c & (a+b)+c
\end{array}\right]=\left[\begin{array}{cc}
(a+0+b)+c & (a+0+b)+c \\
(a+0+b)+c & (a+0+b)+c
\end{array}\right] =\left[\begin{array}{cc}
(a+0)+(b+c) & (a+0)+(b+c) \\
(a+0)+(b+c )& (a+0)+(b+c)
\end{array}\right]=\left[\begin{array}{cc}
a+(b+c) & a+(b+c) \\
a+(b+c )& a+(b+c)
\end{array}\right]=(a)+((b)+(c))\end{equation}.

Did I correctly prove the associative axiom correctly?

Thanks
Cbarker1
 
Physics news on Phys.org
Yes, your steps are correct (although there are a couple of redundant steps you could have skipped in the proof of associativity). Another way to prove the result is to show that the obvious mapping $f:\mathbb Z\to T;x\mapsto(x)$ is an isomorphism.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...

Similar threads

Replies
3
Views
1K
Replies
1
Views
1K
Replies
19
Views
3K
Replies
7
Views
2K
Replies
3
Views
1K
Replies
14
Views
2K
Replies
2
Views
997
Back
Top