- #1
DaniV
- 34
- 3
- Homework Statement
- Consider the quantum field modified Maxwell action in 2 + 1 dimensions:
##S=\int (-\frac{1}{4}F^{\mu\nu}F_{\mu\nu}+\frac {\theta}{2}\epsilon^{\alpha\mu\nu}A_\alpha F_{\mu\nu})\,d^3x##
when ##\theta## is dimensionful constant and ##\epsilon^{\alpha\mu\nu}## Levi-Civita symbol
Show that this action is gauge invariant.
- Relevant Equations
- ##F^{\mu\nu}=\partial^\mu A^\nu-\partial^\nu A^\mu##
gauge transformation: ##A^\mu \to A^\mu + \partial ^\mu \chi## when ##\chi## is scalar function.
I want to show that the action staying the same action after taking ##A^\mu \to A^\mu + \partial ^\mu \chi##, for the first term I suceeded in showing the invariance using the fact ##[\partial ^ \mu , \partial ^\nu]=0## but for the second term I'm getting: ##\epsilon^{\alpha\mu\nu}A_\alpha F_{\mu\nu} \to \epsilon^{\alpha\mu\nu}A_\alpha F_{\mu\nu} +\epsilon^{\alpha\mu\nu}(\partial_\alpha \chi )F_{\mu\nu} ## so I don'`t understand how to show the last step: ##\epsilon^{\alpha\mu\nu}(\partial_\alpha \chi) F_{\mu\nu}=0##
Thanks.
Thanks.