- #1
cbarker1
Gold Member
MHB
- 349
- 23
Dear Everyone,
I am currently in an Introduction to Complex Analysis; I have a question:
Use established properties of moduli to show that when $\left|{z_3}\right|\ne\left|{z_4}\right|$:
$\frac{\Re{({z}_{1}+{z}_{2})}}{\left|{z}_{3}+{z}_{4}\right|}\le\frac{\left| {z}_{1} \right|+\left| {z}_{2} \right|}{\left| \left| {z}_{3} \right|-\left| {z}_{4} \right| \right|}$
My work:
Let ${z}_{1},{z}_{2}\in\Bbb{C}$ and ${z}_{3}, {z}_{4}$ be non-zero complex numbers.
I am stuck.
Thanks
CBarker1
I am currently in an Introduction to Complex Analysis; I have a question:
Use established properties of moduli to show that when $\left|{z_3}\right|\ne\left|{z_4}\right|$:
$\frac{\Re{({z}_{1}+{z}_{2})}}{\left|{z}_{3}+{z}_{4}\right|}\le\frac{\left| {z}_{1} \right|+\left| {z}_{2} \right|}{\left| \left| {z}_{3} \right|-\left| {z}_{4} \right| \right|}$
My work:
Let ${z}_{1},{z}_{2}\in\Bbb{C}$ and ${z}_{3}, {z}_{4}$ be non-zero complex numbers.
I am stuck.
Thanks
CBarker1