- #1
juantheron
- 247
- 1
If $A = (300)^{600}$ and $B=600!$ and $C = (200)^{600}$, Then arrangement of $A,B,C$ in Decreasing order, is
My approach:: Here $A>C$ and Using the formula $\displaystyle \left(\frac{n}{2}\right)^n>n! >\left(\frac{n}{3}\right)^n$ for all natural no. $n>6$
and put $n=600,$ we get $(300)^{600}>600!>(200)^{600}$ So $A>B>C$
My Question is How can we prove $\displaystyle \left(\frac{n}{2}\right)^n>n! >\left(\frac{n}{3}\right)^n$ for all natural no. $n>6$
Can we prove it without induction.
Thanks
My approach:: Here $A>C$ and Using the formula $\displaystyle \left(\frac{n}{2}\right)^n>n! >\left(\frac{n}{3}\right)^n$ for all natural no. $n>6$
and put $n=600,$ we get $(300)^{600}>600!>(200)^{600}$ So $A>B>C$
My Question is How can we prove $\displaystyle \left(\frac{n}{2}\right)^n>n! >\left(\frac{n}{3}\right)^n$ for all natural no. $n>6$
Can we prove it without induction.
Thanks