- #1
Gtay
- 14
- 0
Homework Statement
Let A = [a_{ij}] be a mxn matrix. Show that max[tex]_{ij}[/tex]|a[tex]_{ij}[/tex]| ≤ ‖A‖ ≤ √(∑[tex]_{ij}[/tex]|a[tex]_{ij}[/tex])|
Homework Equations
The Attempt at a Solution
By the definition ‖A‖=max_{||x||≤1}‖A(x)‖ for all x ∈ Rⁿ.So, ‖A‖≥‖A∘(x₁,..,x_{n})[tex]^{T}[/tex]‖ for x = (0,...,1,...0) with 1 is in the i[tex]^{ij}[/tex] position and so ‖A‖ ≥ ‖A∘(x₁,..,x_{n})[tex]^{T}[/tex]‖ = ||(a[tex]_{i1}[/tex],a[tex]_{i2}[/tex],...,a[tex]_{ij}[/tex])|| = √(a[tex]_{i1}[/tex][tex]^{2}[/tex]+...+a[tex]_{in}[/tex]) ≥ max[tex]_{ij}[/tex]|a[tex]_{ij}[/tex]|.
I do not know what how to do the upper bound.
Last edited: