- #1
cue928
- 130
- 0
I am being asked to prove the following:
f: Z --> Z by f(n) = |2n-1| is not one to one and g:{n element of Z|n>=10} --> Z with g(n) = |2n-1| is one to one. Can anyone help me get started on this? The example done in class involved substituting in and finding out if the values were equal. Maybe it's the absolute value bars, not sure how to prove this in this instance.
Incidentally, can you have a discussion about functions without having discussed cartesian products of sets and also relations?
f: Z --> Z by f(n) = |2n-1| is not one to one and g:{n element of Z|n>=10} --> Z with g(n) = |2n-1| is one to one. Can anyone help me get started on this? The example done in class involved substituting in and finding out if the values were equal. Maybe it's the absolute value bars, not sure how to prove this in this instance.
Incidentally, can you have a discussion about functions without having discussed cartesian products of sets and also relations?