- #1
solakis1
- 422
- 0
CANNOT FIGURE THIS OUT:
proof No1
1. p<=>~p.........assumption
2. (p<=>~p)<=>[(p=>~p)^(~p=>p)]......definition of (1)
3. (p<=>~p)=>[(p=>~p)^(~p=>p)].....2,and Biconditional Elimination
4. (p=>~p)^(~p=>p).........1,3 M.Ponens
5. (~p=>p)............4, Simplification
6. (p=>~p)............4,and using Simplification
7. ~~pvp............5, material implication
8. ~pv~p............6, material implication
9. pvp.............7. negation elimination
10. ~p.............8, idempontent law
11. p.............9, idempontent law
12. ~p^p............10,11 and Conjunctionproof No 2
1. p<=>~p.........assumption
2. (p<=>~p)<=>[(p=>~p)^(~p=>p)]......definition of (1)
3. (p<=>~p)=>[(p=>~p)^(~p=>p)].....2, Biconditional Elimination
4. (p=>~p)^(~p=>p).........1,3 M.Ponens
5. p=>p............4, hypothetical Syllogism
6. ~pvp............5, material implication
In the 1st proof we ended up with a contradiction ,while in the 2nd proof with an identity
proof No1
1. p<=>~p.........assumption
2. (p<=>~p)<=>[(p=>~p)^(~p=>p)]......definition of (1)
3. (p<=>~p)=>[(p=>~p)^(~p=>p)].....2,and Biconditional Elimination
4. (p=>~p)^(~p=>p).........1,3 M.Ponens
5. (~p=>p)............4, Simplification
6. (p=>~p)............4,and using Simplification
7. ~~pvp............5, material implication
8. ~pv~p............6, material implication
9. pvp.............7. negation elimination
10. ~p.............8, idempontent law
11. p.............9, idempontent law
12. ~p^p............10,11 and Conjunctionproof No 2
1. p<=>~p.........assumption
2. (p<=>~p)<=>[(p=>~p)^(~p=>p)]......definition of (1)
3. (p<=>~p)=>[(p=>~p)^(~p=>p)].....2, Biconditional Elimination
4. (p=>~p)^(~p=>p).........1,3 M.Ponens
5. p=>p............4, hypothetical Syllogism
6. ~pvp............5, material implication
In the 1st proof we ended up with a contradiction ,while in the 2nd proof with an identity