- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Curves $P,\,Q,\,R,\,S$ are defined in the plane as follows:
$P=\{(x,\,y):x^3-3xy^2+3y=1\}$
$Q=\{(x,\,y):3x^2y-3x-y^3=0\}$
$R=\left\{(x,\,y):x^2-y^2=\dfrac{x}{x^2+y^2} \right\}$
$S=\left\{(x,\,y):2xy+\dfrac{y}{x^2+y^2}=3 \right\}$
Prove that $P\cap Q=R\cap S$.
$P=\{(x,\,y):x^3-3xy^2+3y=1\}$
$Q=\{(x,\,y):3x^2y-3x-y^3=0\}$
$R=\left\{(x,\,y):x^2-y^2=\dfrac{x}{x^2+y^2} \right\}$
$S=\left\{(x,\,y):2xy+\dfrac{y}{x^2+y^2}=3 \right\}$
Prove that $P\cap Q=R\cap S$.