- #1
SplinterCell
- 18
- 0
Let ##\varphi## be some scalar field. In "The Classical Theory of Fields" by Landau it is claimed that
$$
\frac{\partial\varphi}{\partial x_i} = g^{ik} \frac{\partial \varphi}{\partial x^k}
$$
I wanted to prove this identity. Using the chain rule
$$
\frac{\partial}{\partial x_{i}}=\frac{\partial x^{k}}{\partial x_{i}}\frac{\partial}{\partial x^{k}}
$$
Differentiating ##x^{k}=g^{ik}x_{i}## with respect to ##x_i## yields
$$
\frac{\partial x^{k}}{\partial x_{i}}=g^{ik} \tag{*}
$$
which seems to prove the identity (?). However I'm not sure about the validity of the last step, especially because ##(*)## isn't mentioned in the relevant literature (either because it's too trivial or/and not useful or because it's wrong). I've only seen the metric tensor expressed as
$$
g_{ik}=\frac{\partial x^{l}}{\partial x^{\prime i}}\frac{\partial x^{l}}{\partial x^{\prime k}}
$$
where the primed coordinates refer to a different coordinate system we're transforming to.
$$
\frac{\partial\varphi}{\partial x_i} = g^{ik} \frac{\partial \varphi}{\partial x^k}
$$
I wanted to prove this identity. Using the chain rule
$$
\frac{\partial}{\partial x_{i}}=\frac{\partial x^{k}}{\partial x_{i}}\frac{\partial}{\partial x^{k}}
$$
Differentiating ##x^{k}=g^{ik}x_{i}## with respect to ##x_i## yields
$$
\frac{\partial x^{k}}{\partial x_{i}}=g^{ik} \tag{*}
$$
which seems to prove the identity (?). However I'm not sure about the validity of the last step, especially because ##(*)## isn't mentioned in the relevant literature (either because it's too trivial or/and not useful or because it's wrong). I've only seen the metric tensor expressed as
$$
g_{ik}=\frac{\partial x^{l}}{\partial x^{\prime i}}\frac{\partial x^{l}}{\partial x^{\prime k}}
$$
where the primed coordinates refer to a different coordinate system we're transforming to.