- #1
Procrastinate
- 158
- 0
Could someone please give me a hint on this question?
In the tetrahedron ABCD, AB is perpendicular to DC and AD is perpendicular to BC, prove that DB is perpendicular to AC.
This is what I am stuck on:
DB.AC = (DC+CB).(AD+dc)
=DC.AD +DC.DC+CB.AD+CB.DC
=(CA+AD).AD+d.d+(CA+AB).DC
=CA.AD+AD.AD+d.d+CA.DC+ab.dc
=-c.d+d.d+d.d+-c.(CA+AD)
-c.d+d.d+d.d+c.c+-c.d
=2d.d+c.c-2(c.d)
See attachment.
In the tetrahedron ABCD, AB is perpendicular to DC and AD is perpendicular to BC, prove that DB is perpendicular to AC.
This is what I am stuck on:
DB.AC = (DC+CB).(AD+dc)
=DC.AD +DC.DC+CB.AD+CB.DC
=(CA+AD).AD+d.d+(CA+AB).DC
=CA.AD+AD.AD+d.d+CA.DC+ab.dc
=-c.d+d.d+d.d+-c.(CA+AD)
-c.d+d.d+d.d+c.c+-c.d
=2d.d+c.c-2(c.d)
See attachment.