- #1
nietzsche
- 186
- 0
Homework Statement
Prove that for any polynomial function f, and any number a, there is a polynomial function g, and a number b, such that f(x) = (x-a)g(x) + b for all x.
Homework Equations
The Attempt at a Solution
Base Case: Let f(x) be a polynomial of degree n = 1. Then:
[tex]
\begin{align*}
f(x) &= c_1x+c_0\\
f(x) &= c_1x - c_1a + c_1a + c_0\\
f(x) &= (x-a)c_1 + c_1a + c_0\\
f(x) &= (x-a)g(x) + b
\end{align*}
[/tex]
where g(x) = c1 and b = (c1a + c0).
Let P(n) be the statement that every polynomial function of degree n can be written as f(x) = (x-a)g(x) + b.
Take P(n+1) and assume P(n) is true:
[tex]
\begin{align*}
f(x) &= c_{n+1}x^{n+1} + c_{n}x^{n}+...+c_1x + c_0\\
f(x) &= c_{n+1}x^{n+1} + (x-a)q(x) + k_0\\
f(x) &= c_{n+1}x^{n+1} - c_{n+1}x^na + c_{n+1}x^na + (x-a)q(x) + k_0\\
f(x) &= (x-a)(c_{n+1}x^n) + c_{n+1}x^na + (x-a)q(x) + k_0\\
f(x) &= (x-a)(c_{n+1}x^n) + (x-a)r(x) + k_1 + (x-a)q(x) + k_0\\
f(x) &= (x-a)(c_{n+1}x^n + r(x) + q(x)) + k_1 + k_0\\
f(x) &= (x-a)g(x) + b
\end{align*}
[/tex]
where g(x) = cn+1xn + r(x) + q(x)
and b = k1 + k0.
I think it's right, but I'm always so unsure of myself when it comes to induction.