- #1
solakis1
- 422
- 0
Given :
A) primitive symbols : (1, *) and
B) The axioms:
1) \(\displaystyle \forall x\forall y[x*=y*\Longrightarrow x=y]\)
2) \(\displaystyle \forall x[x*\neq 1]\)
3) \(\displaystyle [P(1)\wedge\forall x(P(x)\Longrightarrow P(x*))]\Longrightarrow\forall xP(x)\)
Then prove:
\(\displaystyle \forall x[x=1\vee \exists y(y*=x)]\)
A) primitive symbols : (1, *) and
B) The axioms:
1) \(\displaystyle \forall x\forall y[x*=y*\Longrightarrow x=y]\)
2) \(\displaystyle \forall x[x*\neq 1]\)
3) \(\displaystyle [P(1)\wedge\forall x(P(x)\Longrightarrow P(x*))]\Longrightarrow\forall xP(x)\)
Then prove:
\(\displaystyle \forall x[x=1\vee \exists y(y*=x)]\)