- #1
CAF123
Gold Member
- 2,948
- 88
Homework Statement
Prove:
1) a)If A is a nonempty bounded subset of ##\mathbb{R}## and B={##\epsilon x: x \in A##} then ##\sup{B} = \epsilon \sup(A),## where ##\epsilon > 0## any positive real number.
b) If A+B = {a+b, ##a \in A, b \in B##}, A, B nonempty bounded subsets of ##\mathbb{R}## then ##\sup(A+B) = \sup(A) + \sup(B)##
2)If ##x_n## converges, then ##x_n/n## converges.
The Attempt at a Solution
1) a) By Completeness axiom, ##\sup(A)## exists. Each element of B looks like ##\epsilon x_i##, each ##x_i \in A##. Write B = ##\epsilon##{x : ##x \in A##} = ##\epsilon A##. The supremum of A is an element of A and so let ##\sup(A) = x_o \in A##. So ##\sup(B) = \epsilon x_o = \epsilon (x_o) = \epsilon (sup(A))##.
b)##\sup(A)## and ##\sup(B)## exist by Completeness. By defintion, ##a \leq \sup(A) \forall a \in A,## and ##b \leq \sup(B) \forall b \in B##. So the largest element ##a+b \leq \sup(A) + \sup(B)## and the equality true if ##\sup(A) \in A, \sup(B) \in B##. A + B is closed so the equality is true (not sure about this).
2) ##x_n## converges so ##|x_n| \leq a \Rightarrow -a < x_n < a \Rightarrow -a/n < x_n/n < a/n## i.e ##|x_n/n| \leq a/n##. This does not prove anything helpful.
Instead, given that ##x_n## converges, we have that for ##n \geq N, |x_n| \leq a## so ##1/n \leq 1/N \Rightarrow x_n/n \leq x_n/N \leq a/N## I think this is wrong though since I have assumed the ##x_i## are positive. Is there a way to do this via epsilon-N? I can't see it yet.
Many thanks.