- #1
ognik
- 643
- 2
(I haven't encountered these before, also not in the book prior to this problem or in the near future ...)
Show that the 1st derivatives of the legendre polynomials satisfy a self-adjoint ODE with eigenvalue $\lambda = n(n+1)-2 $
Wiki shows a table of poly's , I don't think this is what the book means ...
Wiki also shows Rodrique's formula which looks more relevant - $ P_n(x) =\frac{1}{2^n}\frac{1}{2!} \d{^n{}}{{x}^n} (x^2-1)^n$
So I differentiated that a couple of times to see, and got $ P_0 =1, P_1 = x, P_2 = \frac{1}{2}(3x^2 - 1) ...$ - and realized I was just generating the polynomials. Basically I don't what I'm supposed to be doing?
Show that the 1st derivatives of the legendre polynomials satisfy a self-adjoint ODE with eigenvalue $\lambda = n(n+1)-2 $
Wiki shows a table of poly's , I don't think this is what the book means ...
Wiki also shows Rodrique's formula which looks more relevant - $ P_n(x) =\frac{1}{2^n}\frac{1}{2!} \d{^n{}}{{x}^n} (x^2-1)^n$
So I differentiated that a couple of times to see, and got $ P_0 =1, P_1 = x, P_2 = \frac{1}{2}(3x^2 - 1) ...$ - and realized I was just generating the polynomials. Basically I don't what I'm supposed to be doing?