- #1
bugatti79
- 795
- 1
Homework Statement
Consider ##R^2## with the sup norm ##|| ||_∞## defined by ##||x||_\infty=sup(|x_1|,|x_2|)## for ##x = (x1, x2)##.
Show that a sequence
##x^{n} \in (R^2, || ||_\infty)## where
##x^{n} =(x^ {n}_1, x^{n}_2) ## converges to
##x = (x_1, x_2) \in R^2## (with the sup norm) if and only if
## x^{n}_1 \to x_1##, and ##x^{n}_2→ x_2 \in R##.
The Attempt at a Solution
We need to show ##x^n_1 \to x_1## and ##x^n_2 \to x_2 \in R##
Assume that ##x^n_1 \to x_1 \in (R^2, || ||_\infty)##, we know
## \exists n_0 in N s.t ||x^n-x||_\infty < \epsilon \forall n>n_0## ie
##||(x^n_1,x^n_2)-(x_1,x_2)||_\infty =sup|(x^n_1-x_1, x^n_2-x_2)| < \epsilon ##
##= max|(x^n_1-x_1, x^n_2-x_2)|##
We have that
##|x^n_1-x_1| \le max (x^n_1-x_1, x^n_2-x_2) < \epsilon \forall n>n_0##
##|x^n_1-x_1| < \epsilon##
This shows ##x^n_1 \to x_1 as n \to \infty##
Similarly for ##|x^n_2-x_2|##...?