- #1
cmajor47
- 57
- 0
Homework Statement
Prove that for all sets A, B, and C, (A-C) [tex]\cap[/tex] (B-C) [tex]\cap[/tex] (A-B) = ∅
Homework Equations
The Attempt at a Solution
Proof: Suppose A, B, and C are sets
Let x [tex]\in[/tex] (A-C) [tex]\cap[/tex] (B-C) [tex]\cap[/tex] (A-B)
Since x [tex]\in[/tex] (A-C), by definition of difference, x [tex]\in[/tex] A and x [tex]\notin[/tex] C
Since x [tex]\in[/tex] (B-C), x [tex]\in[/tex] B and x [tex]\notin[/tex] C
Since x [tex]\in[/tex] (A-B), x [tex]\in[/tex] A and x [tex]\notin[/tex] B
Then by definition of intersection, if x [tex]\in[/tex] A then x [tex]\notin[/tex] C and x [tex]\notin[/tex] B
Also, if x [tex]\in[/tex] B then x [tex]\notin[/tex] C
Therefore there is no intersection of sets A, B, and C
Therefore, the intersection of (A-C) [tex]\cap[/tex] (B-C) [tex]\cap[/tex] (A-B) = ∅
Is this proof correct, I feel like I am missing something?