- #1
laura_a
- 66
- 0
How to prove Sigma^infty_{n=1} r^n*cosn(t) = (r cos (t) - r^2)/(1-2r*cos(t) + r^2) ??
This question has two parts and I need help with the first part (I think) because then I should be able to make a start on the second part. The exact question is (where t = theta)
"Write z=re^(it), where 0 < r < 1, in the summation formula (which it says was derived in the example on the previous page, I'll put that formula below) and then with the aid of the theorem (4) which i'll also put below show that
Sigma^infty_{n=1} r^n*cosn(t) = (r cos (t) - r^2)/(1-2r*cos(t) + r^2)
when 0 < r < 1
And a similar one for sin as well, but I don't need to be spoon fed everything, I can work it out just need help on the first part with the z=re^(it) because I am sure that is going to help me with the cos thing?
Summation formula
Sigma^{infty}_{n=0} z^n = (1/(1-z))
Theorem (4)
I think it means
Sigma^{infty}_{n=0} (x_n + iy_n) = Sigma^{infty}_{n=0} x_n + i Sigma^{infty}_{n=0} y_n
The first part of the question asks to write z=re^(it) into the summation formula
Sigma^{infty}_{n=0} z^n = (1/(1-z))
so I fugure all I have to do is sub it in.. but I think I need to use the sub that e^(it) = cos(t) + isin(t)
So then I have z = r(cos(t) + isin(t))
so according to summation formula
z^n = (r(cos(t) + isin(t)))^n = 1/(1-r(cos(t) + isin(t))
And the other formula looks as though I can split those two up into real and imaginary, but as you may be able to tell I'm not really sure about this topic at all, can anyone help me get any further? And maybe let me know if I'm even on the right planet on the above attempt.
Thanks heaps
Homework Statement
This question has two parts and I need help with the first part (I think) because then I should be able to make a start on the second part. The exact question is (where t = theta)
"Write z=re^(it), where 0 < r < 1, in the summation formula (which it says was derived in the example on the previous page, I'll put that formula below) and then with the aid of the theorem (4) which i'll also put below show that
Sigma^infty_{n=1} r^n*cosn(t) = (r cos (t) - r^2)/(1-2r*cos(t) + r^2)
when 0 < r < 1
And a similar one for sin as well, but I don't need to be spoon fed everything, I can work it out just need help on the first part with the z=re^(it) because I am sure that is going to help me with the cos thing?
Homework Equations
Summation formula
Sigma^{infty}_{n=0} z^n = (1/(1-z))
Theorem (4)
I think it means
Sigma^{infty}_{n=0} (x_n + iy_n) = Sigma^{infty}_{n=0} x_n + i Sigma^{infty}_{n=0} y_n
The Attempt at a Solution
The first part of the question asks to write z=re^(it) into the summation formula
Sigma^{infty}_{n=0} z^n = (1/(1-z))
so I fugure all I have to do is sub it in.. but I think I need to use the sub that e^(it) = cos(t) + isin(t)
So then I have z = r(cos(t) + isin(t))
so according to summation formula
z^n = (r(cos(t) + isin(t)))^n = 1/(1-r(cos(t) + isin(t))
And the other formula looks as though I can split those two up into real and imaginary, but as you may be able to tell I'm not really sure about this topic at all, can anyone help me get any further? And maybe let me know if I'm even on the right planet on the above attempt.
Thanks heaps