- #1
DrunkenOldFool
- 20
- 0
In a triangle $ABC$, the sides opposite to vertices $A,B,C$ are $a,b,c$ respectively. I have to prove
$$ \frac{\tan\left( \frac{A}{2}\right)}{(a-b)(a-c)}+\frac{\tan\left( \frac{B}{2}\right)}{(b-c)(b-a)}+\frac{\tan\left( \frac{C}{2}\right)}{(c-a)(c-b)} = \frac{1}{\Delta}$$
$\Delta$ denotes the area of the triangle.
$$ \frac{\tan\left( \frac{A}{2}\right)}{(a-b)(a-c)}+\frac{\tan\left( \frac{B}{2}\right)}{(b-c)(b-a)}+\frac{\tan\left( \frac{C}{2}\right)}{(c-a)(c-b)} = \frac{1}{\Delta}$$
$\Delta$ denotes the area of the triangle.