- #1
Guest2
- 193
- 0
I'm given the example that the space $\mathbb{R}^2$ is spanned by each of the following set of vectors: \(\displaystyle \left\{i, j\right\}\), \(\displaystyle \left\{i, j, i+j\right\}\), and \(\displaystyle \left\{0, i, -i, -j, i+j\right\}\).
However, it's not obvious to me how. Let $i = (s, t)$ and $j= (u, v)$ then $\left\{i, j\right\}$ means $a(s,t)+b(u, v) $ for $a,b \in \mathbb{R}$, which belongs to the span of $\mathbb{R}^2$. Is this correct? If so, then I could also say since $i = (s, t)$ and $j= (u, v)$ then $i+j = (s+u, t+v)$ so $\left\{i, j, i+j\right\}$ means $a(s,t)+b(u, v)+c(s+u, t+v) $ for $a,b,c \in \mathbb{R}$, which belongs to the span of $\mathbb{R}^2$. Similarly, for the last one $\left\{0, i, -i, -j, i+j\right\}$ $= a(0, 0)+b(s, t)+c(-s, -t)+d(-u, -v)+e(s+u, t+v)$ for $a,b,c,d,e \in \mathbb{R}$ which also belongs to the span of $\mathbb{R}^2$.
------------------edit---------------------
I'm starting to think it means that any $(x, y) \in \mathbb{R}^2$ can written in the form $a(s, t)+b(u,v)$ for $a,b \in \mathbb{R}$
But how do I prove this?
However, it's not obvious to me how. Let $i = (s, t)$ and $j= (u, v)$ then $\left\{i, j\right\}$ means $a(s,t)+b(u, v) $ for $a,b \in \mathbb{R}$, which belongs to the span of $\mathbb{R}^2$. Is this correct? If so, then I could also say since $i = (s, t)$ and $j= (u, v)$ then $i+j = (s+u, t+v)$ so $\left\{i, j, i+j\right\}$ means $a(s,t)+b(u, v)+c(s+u, t+v) $ for $a,b,c \in \mathbb{R}$, which belongs to the span of $\mathbb{R}^2$. Similarly, for the last one $\left\{0, i, -i, -j, i+j\right\}$ $= a(0, 0)+b(s, t)+c(-s, -t)+d(-u, -v)+e(s+u, t+v)$ for $a,b,c,d,e \in \mathbb{R}$ which also belongs to the span of $\mathbb{R}^2$.
------------------edit---------------------
I'm starting to think it means that any $(x, y) \in \mathbb{R}^2$ can written in the form $a(s, t)+b(u,v)$ for $a,b \in \mathbb{R}$
But how do I prove this?
Last edited: