- #1
NoName3
- 25
- 0
Let $I \subseteq \mathbb{R}$ be an interval. Prove that
1. If $x, y \in I$ and $ x \le y$ then $[x,y] \subseteq I$.
2. If $I$ is an open interval, and if $x \in I$, then there is some $\delta > 0 $ such that $[x-\delta, x+\delta] \subseteq I$.
1. If $x, y \in I$ and $ x \le y$ then $[x,y] \subseteq I$.
2. If $I$ is an open interval, and if $x \in I$, then there is some $\delta > 0 $ such that $[x-\delta, x+\delta] \subseteq I$.