- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
Given the following definition:
If $A,B$ are sets, we define the set $A \triangle B =(A \setminus B) \cup (B \setminus A)$ and we call it symmetric difference of $A,B$.
I have to prove the following sentences:
That's what I have tried:
Also, how can I show the last two sentences?
Given the following definition:
If $A,B$ are sets, we define the set $A \triangle B =(A \setminus B) \cup (B \setminus A)$ and we call it symmetric difference of $A,B$.
I have to prove the following sentences:
- $A \cap B= \varnothing$, then $A \triangle B=A \cup B$
- $A \triangle A=\varnothing$
- $A \triangle B=B \triangle A$
- $(A \triangle B) \triangle C= A \triangle (B \triangle C)$
- $A \cap (B \triangle C)=(A \cap B) \triangle (A \cap C)$
That's what I have tried:
- Since $A \cap B=\varnothing$, $A \setminus B=A$ and $B \setminus A=B$.
So, $A \triangle B=(A \setminus B) \cup (B \setminus A)=A \cup B$
Can we just say it like that or do we have to prove it further?
- Do I have to take a $x \in A \triangle A$, or isn't it necessary?
If so, then is it like that?
$x \in A \triangle A \leftrightarrow x \in (A \setminus A) \cup (A \setminus A) \leftrightarrow x \in \varnothing \cup \varnothing \leftrightarrow x \in \varnothing$, that cannot be true, therefore there is no set $x$, for which $x \in A \triangle A$, so $A \triangle A=\varnothing$.
- $x \in A \triangle B \leftrightarrow x \in (A \setminus B) \cup (B \setminus A) \leftrightarrow x \in (A \setminus B) \lor x \in (B \setminus A) \leftrightarrow x \in (B \setminus A) \lor x \in (A \setminus B) \leftrightarrow x \in B \triangle A $
Also, how can I show the last two sentences?