- #1
NoName3
- 25
- 0
Let $R$ be a commutative ring and let $\text{M}_2(R)$ denote the ring of $2 \times 2$ matrices with coefficients in $R$.
(a) Show that the group of units in $\text{M}_2(R)$ is $\text{GL}_2(R) = \left\{A \in \text{M}_2(R): \text{det}(A) \in R^{\times} \right\}$;
(b) show tha $\text{GL}_2(R) \to R^{\times}$ is a homomorphism;
(c) prove that $\text{GL}_2(R)$ is isomorphic to $S_3.$
(a) $\text{GL}_{2}(R) = \left\{\dfrac{1_R}{\text{det}(A)}A^{-1}: \det(A) \ne 0_R\right\}$. But $\dfrac{1_R}{\text{det}(A)} = \det(A^{-1})$ and $\det(A^{-1})\cdot A^{-1}$ $ = A \in \text{M}_2(R).$
Moreover, $\text{det}(A) \ne 0 \implies \text{det}(A) \in R^{\times}$ thus $\text{GL}_{2}(R) = \left\{A \in \text{M}_2(R): \det(A) \in R^{\times}\right\}, $ is that correct?
(a) Show that the group of units in $\text{M}_2(R)$ is $\text{GL}_2(R) = \left\{A \in \text{M}_2(R): \text{det}(A) \in R^{\times} \right\}$;
(b) show tha $\text{GL}_2(R) \to R^{\times}$ is a homomorphism;
(c) prove that $\text{GL}_2(R)$ is isomorphic to $S_3.$
(a) $\text{GL}_{2}(R) = \left\{\dfrac{1_R}{\text{det}(A)}A^{-1}: \det(A) \ne 0_R\right\}$. But $\dfrac{1_R}{\text{det}(A)} = \det(A^{-1})$ and $\det(A^{-1})\cdot A^{-1}$ $ = A \in \text{M}_2(R).$
Moreover, $\text{det}(A) \ne 0 \implies \text{det}(A) \in R^{\times}$ thus $\text{GL}_{2}(R) = \left\{A \in \text{M}_2(R): \det(A) \in R^{\times}\right\}, $ is that correct?