- #1
kmitza
- 17
- 4
I am learning some complex analysis as it is a prerequisite for the masters program that I was accepted into and I didn't take it yet during my bachelors. I am using some lecture notes in Slovene and I have run into a problem that has proven troublesome for me :
If ##g: D \rightarrow \mathbb{C} ## is a harmonic function and ##f: D' \rightarrow D ## is holomorphic. If ## f= u +iv ## prove that
$$h = g(u(x,y),v(x,y)) $$ is harmonic.
My attempt was to just calculate the derivatives and obtain that it is zero but I got stuck in the calculation. It is entirely possible that this is an easy problem as I am not an analysis person but I would like to know if there is a simpler way of proving this than straight calculation?
If ##g: D \rightarrow \mathbb{C} ## is a harmonic function and ##f: D' \rightarrow D ## is holomorphic. If ## f= u +iv ## prove that
$$h = g(u(x,y),v(x,y)) $$ is harmonic.
My attempt was to just calculate the derivatives and obtain that it is zero but I got stuck in the calculation. It is entirely possible that this is an easy problem as I am not an analysis person but I would like to know if there is a simpler way of proving this than straight calculation?