- #1
logicgate
- 11
- 2
- TL;DR Summary
- I'm trying to prove that fractions are the same as division using the axiom of multiplicative inverse.
So using the multiplicative inverse axiom we have :
1) x . x^-1 = 1
2) x . (1/x) = 1
I have no idea why do mathematicians define the multiplicative inverse of a number x to be the "fraction" 1/x.
But I know for sure that multiplying any number a for example by the multiplicative inverse of x is the same as "a divided by x"
1) x . x^-1 = 1
2) x . (1/x) = 1
I have no idea why do mathematicians define the multiplicative inverse of a number x to be the "fraction" 1/x.
But I know for sure that multiplying any number a for example by the multiplicative inverse of x is the same as "a divided by x"