- #1
skate_nerd
- 176
- 0
I have a problem asking to prove the following statement is false:
"Every non-empty set of integers has a least element".
This seems pretty intuitively false, and so I tried to sum that up in the following way:
Suppose we have a subset \(A\) in the "universe" \(X\).
Let \(A=\{-n: n\in{N}\}\), a non-empty set ( \(N\) denotes the set of all natural numbers).
So \(A=\{-1, -2, -3, ..., -n\}\).
It is evident that there is no limit to how low the elements in \(A\) can become.
Since \(A\) is a non-empty set with no least element, we have arrived at the desired conclusion. Q.E.D.
My professor gave me one out of three points on this problem and I just can't figure out why...
"Every non-empty set of integers has a least element".
This seems pretty intuitively false, and so I tried to sum that up in the following way:
Suppose we have a subset \(A\) in the "universe" \(X\).
Let \(A=\{-n: n\in{N}\}\), a non-empty set ( \(N\) denotes the set of all natural numbers).
So \(A=\{-1, -2, -3, ..., -n\}\).
It is evident that there is no limit to how low the elements in \(A\) can become.
Since \(A\) is a non-empty set with no least element, we have arrived at the desired conclusion. Q.E.D.
My professor gave me one out of three points on this problem and I just can't figure out why...