- #1
Eclair_de_XII
- 1,083
- 91
Homework Statement
"Let ##U={p+r\sqrt{2}:p,r∈ℚ}## and let ##V={a+b\sqrt{7}:a,b∈ℚ}##. Show that ##ℚ⊆U∩V##. Then show that ##U∩V⊆ℚ## and conclude that ##U∩V=ℚ##."
Homework Equations
The Attempt at a Solution
I only knew how to prove the first part. That is:
(1)
"Suppose that ##ℚ⊄U∩V##. This implies that ##∃x∈ℚ## such that ##x∉U## and ##x∉V##. But since ##ℚ⊂U## and ##ℚ⊂V##, it follows that there does not exist an ##x∈ℚ⊂U## such that ##x∉U##. Similarly, there exist no ##x∈ℚ⊂V## such that ##x∉V##."
I'm also ambivalent about saying that ##ℚ⊂U## when I haven't proven yet that ##∃q## such that ##p+q\sqrt{2}∉ℚ##. I'm thinking about just changing it to ##ℚ⊆U##.
(2)
##{p+r\sqrt{2}:p,r∈ℚ}∩{a+b\sqrt{7}:a,b∈ℚ}##
And here is where I got stuck; proving that if ##r≠0##, then ##p+r\sqrt{2}∉V##. Similarly, I was unable to prove that ##a+b\sqrt{7}∉U##. Basically, I'm trying to prove that every element of an intersection whose elements I am unable to properly identify. I'm thinking of just doing it one piece at a time:
"Suppose ##p+r\sqrt{2}∈V##. Then we can say that ##p+r\sqrt{2}=a+b\sqrt{7}##. With algebra, I get: ##\sqrt{2}=\frac{1}{r}(s+b\sqrt{7})## where ##s=a-p##. Squaring both sides gives me ##2=\frac{1}{r}(s^2+2bs\sqrt{7}+7b^2)##. However, contradicts the fact that ##2## is a prime number, since it can only be written as the product of two integers: itself and ##1##."
That's only proving that any element of ##U## with ##r≠0## is an element of ##V##, and I don't even think I'd be done, since I cannot rule out the possibility that ##s+b\sqrt{7}=1## and ##\frac{1}{r}=2##; or the possibility that ##\frac{1}{r}=1## and ##s+b\sqrt{7}=\sqrt{2}##.
I was given a hint that I needed to use the fact that ##\sqrt{14}∉ℚ## for the second part...