- #1
cbarker1
Gold Member
MHB
- 349
- 23
- TL;DR Summary
- I have a particular integral that I need to show that it cannot be finite in L1(positive real line) space. The integral comes from an Euler-Cauchy ODE. I want to show that the answer is not bounded.
Dear everyone,
I have a question on how to show that an integral is divigent. Here is the setup:
Suppose that we have the following function ##\sigma(x)=\frac{1}{x^{2-\varepsilon}}## for an arbitrary fixed ##\varepsilon>0.##
\begin{equation}
\dfrac{d}{dx}[-u'(x)]=\dfrac{1}{x^{2-\varepsilon}}u
\end{equation}
We want to verify using the bounds and using explicit form of the solution ##u##.
First we can rewrite the equation:
\begin{equation}
-u''(x)=u(x)\dfrac{1}{x^{2-\varepsilon}}
\end{equation}
Then we define a solution form of the differential equation ##u=x^{r-\varepsilon}## such that ##u## is in ##C^{2}(0,\infty)##, where ##C^{2}(0,\infty)## is the set of all continuously differentiable functions on ##(0,\infty).## Then we know that ##u''=(r-\varepsilon)(r-\varepsilon-1)x^{r-\varepsilon-2}##. Thus we have the following differential equation:
\begin{equation}
(r-\varepsilon)(r-\varepsilon-1)x^{r-\varepsilon-2}\cdotp x^{2-\varepsilon}+x^{r-\varepsilon}=0.
\end{equation}
Since #\varepsilon# is arbitrary, we can simplify the equation and factor ##x^{r-\varepsilon}## for ##x^{r-\varepsilon}>0;## therefore, we have the simplified equation:
\begin{equation}
(r-\varepsilon)(r-\varepsilon-1)+1=0.
\end{equation}
Now we must solve for ##r## in the auxiliary equation. We will expand the left-hand side and use the quadratic formula for ##r##:
\begin{equation}
r=\dfrac{2\varepsilon+1\pm \sqrt{(2\varepsilon+1)^2-4\bigg(\dfrac{(2\varepsilon+1)^2+3}{4}\bigg)}}{2}
\end{equation}
After some simplifications on the previous equations, we have the following solution:
## r=\dfrac{2\varepsilon+1\pm i\sqrt{3}}{2}.##
Now the solution to the differential equation is
##u(x)=x^{r-\varepsilon}## which implies that ##u(x)=c_1\sqrt{x}\cos(\frac{\sqrt{3}}{2}\log x)+c_2\sqrt{x}\sin(\frac{\sqrt{3}}{2}\log x)##. So we apply the one of the boundary condition that ##u(0)=0##; thus, the final solution is ##u(x)=\sqrt{x}\cos(\frac{\sqrt{3}}{2}\log x).## Now we need to check if the solution is not bounded.
In other words,
\begin{equation}
\sqrt{x}\cos\bigg(\frac{\sqrt{3}}{2}\log x\bigg)\geq \bigg(\int_{0}^{x}t^{-\varepsilon}dt\bigg)\bigg(\int_{x}^{\infty}t^{-\frac{3}{2}+\varepsilon}\cos(\frac{\sqrt{3}}{2}\log(t))dt\bigg)\\
\end{equation}
The red second integral is where I am having the most trouble on showing that it is not bounded.
Any suggestions are helpful. I thought to use a contradiction and squeeze theorem to show that the integral is not bounded.
Thanks,
Cbarker1
I have a question on how to show that an integral is divigent. Here is the setup:
Suppose that we have the following function ##\sigma(x)=\frac{1}{x^{2-\varepsilon}}## for an arbitrary fixed ##\varepsilon>0.##
\begin{equation}
\dfrac{d}{dx}[-u'(x)]=\dfrac{1}{x^{2-\varepsilon}}u
\end{equation}
We want to verify using the bounds and using explicit form of the solution ##u##.
First we can rewrite the equation:
\begin{equation}
-u''(x)=u(x)\dfrac{1}{x^{2-\varepsilon}}
\end{equation}
Then we define a solution form of the differential equation ##u=x^{r-\varepsilon}## such that ##u## is in ##C^{2}(0,\infty)##, where ##C^{2}(0,\infty)## is the set of all continuously differentiable functions on ##(0,\infty).## Then we know that ##u''=(r-\varepsilon)(r-\varepsilon-1)x^{r-\varepsilon-2}##. Thus we have the following differential equation:
\begin{equation}
(r-\varepsilon)(r-\varepsilon-1)x^{r-\varepsilon-2}\cdotp x^{2-\varepsilon}+x^{r-\varepsilon}=0.
\end{equation}
Since #\varepsilon# is arbitrary, we can simplify the equation and factor ##x^{r-\varepsilon}## for ##x^{r-\varepsilon}>0;## therefore, we have the simplified equation:
\begin{equation}
(r-\varepsilon)(r-\varepsilon-1)+1=0.
\end{equation}
Now we must solve for ##r## in the auxiliary equation. We will expand the left-hand side and use the quadratic formula for ##r##:
\begin{equation}
r=\dfrac{2\varepsilon+1\pm \sqrt{(2\varepsilon+1)^2-4\bigg(\dfrac{(2\varepsilon+1)^2+3}{4}\bigg)}}{2}
\end{equation}
After some simplifications on the previous equations, we have the following solution:
## r=\dfrac{2\varepsilon+1\pm i\sqrt{3}}{2}.##
Now the solution to the differential equation is
##u(x)=x^{r-\varepsilon}## which implies that ##u(x)=c_1\sqrt{x}\cos(\frac{\sqrt{3}}{2}\log x)+c_2\sqrt{x}\sin(\frac{\sqrt{3}}{2}\log x)##. So we apply the one of the boundary condition that ##u(0)=0##; thus, the final solution is ##u(x)=\sqrt{x}\cos(\frac{\sqrt{3}}{2}\log x).## Now we need to check if the solution is not bounded.
In other words,
\begin{equation}
\sqrt{x}\cos\bigg(\frac{\sqrt{3}}{2}\log x\bigg)\geq \bigg(\int_{0}^{x}t^{-\varepsilon}dt\bigg)\bigg(\int_{x}^{\infty}t^{-\frac{3}{2}+\varepsilon}\cos(\frac{\sqrt{3}}{2}\log(t))dt\bigg)\\
\end{equation}
The red second integral is where I am having the most trouble on showing that it is not bounded.
Any suggestions are helpful. I thought to use a contradiction and squeeze theorem to show that the integral is not bounded.
Thanks,
Cbarker1
Last edited: