- #1
Dustinsfl
- 2,281
- 5
If you write
$$
e^{ik\theta} = \cos k\theta + i\sin k\theta,
$$
then $\sum\limits_{k = 0}^ne^{ik\theta} = \frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}$ yields two real sums
$$
\sum\limits_{k = 0}^n\cos k\theta = \text{Re}\left(\frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}\right)
$$
and
$$
\sum\limits_{k = 0}^n\sin k\theta = \text{Im}\left(\frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}\right).
$$
Prove that
$$
e^{i\theta} - 1 = 2ie^{i\frac{\theta}{2}}\sin\frac{\theta}{2}.
$$
Not to sure on what to do with this one.
$$
e^{ik\theta} = \cos k\theta + i\sin k\theta,
$$
then $\sum\limits_{k = 0}^ne^{ik\theta} = \frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}$ yields two real sums
$$
\sum\limits_{k = 0}^n\cos k\theta = \text{Re}\left(\frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}\right)
$$
and
$$
\sum\limits_{k = 0}^n\sin k\theta = \text{Im}\left(\frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}\right).
$$
Prove that
$$
e^{i\theta} - 1 = 2ie^{i\frac{\theta}{2}}\sin\frac{\theta}{2}.
$$
Not to sure on what to do with this one.