- #1
ayas
- 4
- 0
Hello,
I know how to start but I don't know how to end that proof. It's supposed to be easy:
Let S a subset of Rn.
PROVE THAT the boundary of S is a closed set.
(I'll use d for delta, so dS is my convention for "the boundary of S").
So here I go:
dS is closed iff it contains all of its boundary points,
so dS is closed iff d(dS) is included in dS.
Let x be any point such that x belongs to d(dS).
So for any Ball B(r, x), r>0, (ie centered at x),
| B intersection dS is not empty
| and B interesection (dS)complement is not empty.
(the second line is equivalent to) B interesection (interiorOfS union exteriorOfS) is not empty
Now what's next??
Thanks for your suggestions. If you do have a suggestion, please don't skip a step or don't bypass a detail because it seems obvious (trust me, nothing is obvious to the one who doesn't know yet!)
I know how to start but I don't know how to end that proof. It's supposed to be easy:
Let S a subset of Rn.
PROVE THAT the boundary of S is a closed set.
(I'll use d for delta, so dS is my convention for "the boundary of S").
So here I go:
dS is closed iff it contains all of its boundary points,
so dS is closed iff d(dS) is included in dS.
Let x be any point such that x belongs to d(dS).
So for any Ball B(r, x), r>0, (ie centered at x),
| B intersection dS is not empty
| and B interesection (dS)complement is not empty.
(the second line is equivalent to) B interesection (interiorOfS union exteriorOfS) is not empty
Now what's next??
Thanks for your suggestions. If you do have a suggestion, please don't skip a step or don't bypass a detail because it seems obvious (trust me, nothing is obvious to the one who doesn't know yet!)