- #1
Shobhit
- 22
- 0
If $p$ is an odd prime expressible as
$$p=x^2+5y^2$$
where $x,y$ are integers, then prove that $p \equiv 1 \text{ or }9\text{ (mod 20)}$.
$$p=x^2+5y^2$$
where $x,y$ are integers, then prove that $p \equiv 1 \text{ or }9\text{ (mod 20)}$.