- #1
wnvl
- 9
- 0
Homework Statement
Prove the following equation
[tex]2^{n-1}\prod_{k=0}^{n-1}\sin(x+\frac{k\pi}{n}) = \sin(nx)[/tex]
Homework Equations
The Attempt at a Solution
Below you find my unsuccessfull attempt using complex numbers.
When you convert it to complex numbers the equality can be rewritten as
[tex]2^{n-1}\prod_{k=0}^{n-1}\frac{e^{i(x+\frac{k\pi}{n})}-e^{-i(x+\frac{k\pi}{n})}}{2i} = \frac{e^{inx}-e^{-inx}}{2i}[/tex]
[tex]i^{-n+1}\prod_{k=0}^{n-1}e^{i(x+\frac{k\pi}{n})}-e^{-i(x+\frac{k\pi}{n})} = e^{inx}-e^{-inx}[/tex]
[tex]e^{i\frac{(-n+1)\pi}{2}}\prod_{k=0}^{n-1}e^{i(x+\frac{k\pi}{n})}-e^{-i(x+\frac{k\pi}{n})} = e^{inx}-e^{-inx}[/tex]
The LHS of this equation contains terms in [tex]e^{inx}[/tex], [tex]e^{i(n-1)x}[/tex], [tex]e^{i(n-2)x}[/tex], ..., [tex]e^{-inx}[/tex].
Calculate the coefficient for each term.
[tex]\underline{e^{inx}}[/tex]
[tex]e^{i\frac{(-n+1)\pi}{2}}\frac{(-n+1)\pi}{2}\prod_{k=0}^{n-1}e^{i(x+\frac{k\pi}{n})}=e^{i\frac{(-n+1)\pi}{2}}e^{inx+i\sum_{k=0}^{n-1}\frac{k\pi}{n}}=e^{inx}[/tex][tex]\underline{e^{-inx}}[/tex]
[tex]e^{i\frac{(-n+1)\pi}{2}}\prod_{k=0}^{n-1}-e^{-i(x+\frac{k\pi}{n})}=(-1)^ne^{i(-n+1)\pi}e^{-inx}=(-1)^{n}e^{-inx} = -e^{-inx}[/tex]
Now we still have to prove that for -n<k<n the coefficient of [tex]{e^{ikx}}[/tex] equals 0 to conclude the proof. But I don't know how to do this.
All suggestions, ideas are welcome. Proofs not using complex numbers will be appreciated as well.
Last edited: