- #1
tickle_monste
- 69
- 1
I've got a proof but I'll wait a couple days to post mine to give you guys a chance to take a crack at it.
Prove that:
For all equations E(A1, ... , An), solving for Ai is equivalent to finding the function
f(A1..A(i-1),A(i+1)...An), such that when f is substituted in E in place of Ai, E reduces to an identity (i.e. 0 = 0, 1 = 1, a^2 + b^2 = c^2, etc.)
Use whatever axioms you'd like.
Prove that:
For all equations E(A1, ... , An), solving for Ai is equivalent to finding the function
f(A1..A(i-1),A(i+1)...An), such that when f is substituted in E in place of Ai, E reduces to an identity (i.e. 0 = 0, 1 = 1, a^2 + b^2 = c^2, etc.)
Use whatever axioms you'd like.