- #1
bigevil
- 79
- 0
Homework Statement
A wavefunction for a hydrogen electron is given by [tex]\Psi = -
\sqrt{\frac{3}{8 \pi}} sin\theta e^{i \phi} (\frac{1}{2a^3})^{3/2}
\frac{re^{-r/2a}}{a \sqrt{3}}[/tex]
Prove that the electron exists in space, ie, [tex]\int {\Psi}^2= 1 [/tex]
2. Homework Equations & attempt at solution
Apologise in advance for the shortcuts, these equations are terrible to type
out.
Expressed in spherical polar coordinates, [tex] dV = r^2 sin \theta dr
d\theta d\phi [/tex]
The squared wavefunction,
[tex]
{\Phi}^2 = \frac{1}{64\pi a^5} r^2 {sin}^2 \theta e^{2i\phi}
[/tex]
With respect to r, [tex] \int^{\infty}{\0} r^4 e^{r/a} = 24 a^5 [/tex]
This is a pain to do due to iterated application of integration by parts, but
by inspection,
[tex]
\int^{\infty}{\0} r^4 e^{r/a} = 4a \int^{\infty}{\0} r^3 e^{r/a} = 4.3a^2
\int^{\infty}{\0} r^2 e^{r/a}... = 24a^5
[/tex]
With respect to [tex]\theta[/tex],
[tex] \int^{\pi}{\0} {sin}^3 \theta d\theta = \frac{4}{3} [/tex]
This gives us,
[tex]
\int {\Phi}^2 dV = \frac{1}{2\pi} \int^{2\pi}{\0} e^{2i\phi} d\phi
[/tex]
I'm stuck at this point. How do I proceed? Was my earlier working correct?
If the earlier integration was right, then the last integral must be equal to 2pi.
Exploration
From using traditional methods the answer I actually get is 0. How does the pi term come about.