- #1
njama
- 216
- 1
Homework Statement
Prove the following:
If the tournament graph is acyclic, there is exactly one vertex which got edges more than any vertex in the graph.
Homework Equations
A tournament is a directed graph (digraph) obtained by assigning a direction for each edge in an undirected complete graph
The Attempt at a Solution
I am not sure how to start. Is it easier to go with the indirect proof (i.e proof by contradiction) ?
Lets say that that kind of vertex does not exist. Than either all vertices have equal number of edges or there are two edges or more with same number of edges which got more edges than any other pair of vertices.
Because the graph is acyclic we could easily see that the relation under the graph is not transitive, not symmetric, not reflexive, is asymmetric.
Could somebody help me please and tell me if I should prove like the way I did?
Thank you.