- #1
ppy
- 64
- 0
3.4. Let E[itex]\in[/itex] R. Prove or disprove the following statements:
(i) if a[itex]\in[/itex]E and b[itex]\in[/itex]E[itex]^{c}[/itex] = ℝ\E and a < b then [a ,b] [itex]\cap[/itex]∂E IS NOT EQUAL TO ∅.
(ii) if a[itex]\in[/itex]E and b[itex]\in[/itex]E[itex]^{c}[/itex] = ℝ\E and a < b then (a ,b) [itex]\cap[/itex]∂E IS NOT EQUAL TO ∅.
I am really stuck I know that the frontier of a set is when a sequence in E and a sequence in E[itex]^{c}[/itex] converge to the same limit.
(i) if a[itex]\in[/itex]E and b[itex]\in[/itex]E[itex]^{c}[/itex] = ℝ\E and a < b then [a ,b] [itex]\cap[/itex]∂E IS NOT EQUAL TO ∅.
(ii) if a[itex]\in[/itex]E and b[itex]\in[/itex]E[itex]^{c}[/itex] = ℝ\E and a < b then (a ,b) [itex]\cap[/itex]∂E IS NOT EQUAL TO ∅.
I am really stuck I know that the frontier of a set is when a sequence in E and a sequence in E[itex]^{c}[/itex] converge to the same limit.