- #1
solakis1
- 422
- 0
Is the following proof ,proving ; \(\displaystyle \forall A\forall B[0<A<B\Longrightarrow \frac{1}{B}<\frac{1}{A}]\) correct??
PROOF:
Let, 0<a<b................1
Let \(\displaystyle \frac{1}{a}<\frac{1}{b}\)
Let,\(\displaystyle \frac{1}{a}=\frac{1}{b}\)
But for \(\displaystyle \frac{1}{a}=\frac{1}{b}\Longrightarrow\neg(\frac{1}{a}<\frac{1}{b})\)
Hence we have: \(\displaystyle \frac{1}{a}<\frac{1}{b}\wedge\neg(\frac{1}{a}<\frac{1}{b})\). a contradiction
Thus \(\displaystyle \neg(\frac{1}{a}=\frac{1}{b})\)..................2
For \(\displaystyle \frac{1}{a}<\frac{1}{b}\Longrightarrow (ab)\frac{1}{a}<(ab)\frac{1}{b}\Longrightarrow b<a(\),since a,b are different from zero and 0<ab
And by using (1) b<a& a<b => b<b = b<b & ~(b<b) ,a contradiction
Thus \(\displaystyle \neg(\frac{1}{a}<\frac{1}{b})\)..................3
Therefor ,from (2) and (3) we have: \(\displaystyle \neg(\frac{1}{a}=\frac{1}{b})\).and \(\displaystyle \neg(\frac{1}{a}<\frac{1}{b})\) =>\(\displaystyle \neg((\frac{1}{a}=\frac{1}{b})\vee(\frac{1}{a}<\frac{1}{b}))\Longrightarrow\frac{1}{b}<\frac{1}{a}\),by using the trichotomy law
PROOF:
Let, 0<a<b................1
Let \(\displaystyle \frac{1}{a}<\frac{1}{b}\)
Let,\(\displaystyle \frac{1}{a}=\frac{1}{b}\)
But for \(\displaystyle \frac{1}{a}=\frac{1}{b}\Longrightarrow\neg(\frac{1}{a}<\frac{1}{b})\)
Hence we have: \(\displaystyle \frac{1}{a}<\frac{1}{b}\wedge\neg(\frac{1}{a}<\frac{1}{b})\). a contradiction
Thus \(\displaystyle \neg(\frac{1}{a}=\frac{1}{b})\)..................2
For \(\displaystyle \frac{1}{a}<\frac{1}{b}\Longrightarrow (ab)\frac{1}{a}<(ab)\frac{1}{b}\Longrightarrow b<a(\),since a,b are different from zero and 0<ab
And by using (1) b<a& a<b => b<b = b<b & ~(b<b) ,a contradiction
Thus \(\displaystyle \neg(\frac{1}{a}<\frac{1}{b})\)..................3
Therefor ,from (2) and (3) we have: \(\displaystyle \neg(\frac{1}{a}=\frac{1}{b})\).and \(\displaystyle \neg(\frac{1}{a}<\frac{1}{b})\) =>\(\displaystyle \neg((\frac{1}{a}=\frac{1}{b})\vee(\frac{1}{a}<\frac{1}{b}))\Longrightarrow\frac{1}{b}<\frac{1}{a}\),by using the trichotomy law