- #1
neworder1
- 66
- 0
Homework Statement
Let [tex]\psi[/tex] be an eigenstate of the operator [tex]L^{2}[/tex] corresponding to the quantum number [tex]l[/tex], i. e. [tex]L^{2} \psi = \hbar l(l+1) \psi[/tex]. Let [tex]<A> = <\psi|A|\psi>[/tex] denote the expectation value of [tex]A[/tex] in state [tex]\psi[/tex].
Prove that [tex]{|<L_{x}>|}^{2} + {|<L_{y}>|}^{2} + {|<L_{z}>|}^{2}\leq l^{2}[/tex] and the inequality is strict unless [tex]\psi[/tex] happens to be also an eigenstate of the opeator [tex]L_{\vec{n}}[/tex] for some axis [tex]\vec_{n}[/tex].